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Phylogenetic models are commonly used in palaeobiology
to study the patterns and processes of organismal
evolution. In the human sciences, phylogenetic methods
have been deployed for reconstructing ancestor–descendant
relationships using linguistic and material culture data.
Within evolutionary archaeology specifically, phylogenetic
analyses based on maximum parsimony and discrete
traits dominate, which sets limitations for the downstream
role cultural phylogenies, once derived, can play in
more elaborate analytical pipelines. Recent methodological
advances in Bayesian phylogenetics, however, now allow us
to infer evolutionary dynamics using continuous characters.
Capitalizing on these developments, we here present an
exploratory analysis of cultural macroevolution of projectile
point shape evolution in the European Final Palaeolithic
and earliest Mesolithic (approx. 15 000–11 000 BP) using a
Bayesian phylodynamic approach and the fossilized birth–
death process model. This model-based approach leaps far
beyond the application of parsimony, in that it not only
produces a tree, but also divergence times, and diversification
rates while incorporating uncertainties. This allows us to
compare rates to the pronounced climatic changes that
occurred during our time frame. While common in cultural
evolutionary analyses of language, the extension of Bayesian
phylodynamic models to archaeology arguably represents a
major methodological breakthrough.
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1. Introduction
Phylogenies are a vital tool in palaeobiology for understanding the patterns and processes of organis-
mal evolution, diversification, extinction and adaptation [1,2]. The introduction of formal cladistics
in the 1960s [3], ever-increasing computing power [4,5] and more recent introductions of powerful
Bayesian statistical frameworks [6–9] have had a profound impact on the quantitative rigour and
reproducibility of palaeobiological analyses. In the human sciences, the use of phylogenetic methods
to reconstruct and analyse historical ancestor–descendant relationships based on cultural traits on the
whole lags somewhat behind in terms of the breadth of application and its analytical sophistication.
Notably, linguists have long been aware of the similarities between language trees and organismal
phylogenies [10,11]. Consequently, and thanks to the systematic compilation of discrete lexical data,
phylogenetic analyses [12–14]—including those using Bayesian methods—are now commonplace in
historical linguistics, and have made singular appearances in other disciplines related to cultural
evolution, such as musicology [15].

Archaeology is another human science in which phylogenetic analysis has gained some traction in
recent decades. Spurred by the development of, initially, the notion of the extended phenotype and later
the emergence of cultural evolutionary theory [16,17], archaeologists have adopted phylogenetic methods
to model and understand material culture evolution [18–26]—Bayesian phylogenetic methods, however,
remain the exception [27–31]. Humanly made objects—artefacts—can be described in many ways and
archaeologists have devised countless, often not readily compatible qualitative and quantitative ways of
doing so. Chief among these is typology, a pre-computational and essentialist classification practice that
partitions variation into presumed average forms [32,33].

Inspired by the debate about unit definition in biology (e.g. [34,35]), modern artefact phylogenetics
has attempted to break with this classificatory approach, arguing that partitioning individual artefacts
into a collection of traits that together describe them circumvents the unduly reifying tendencies
of typological classification (cf. [36]). In doing so, however, continuous characters are commonly
discretized into arbitrary bins that also do not fully describe the observed variation (e.g. [33]). Again
inspired by palaeobiology, archaeologists have also employed landmark-based geometric morphomet-
rics (GMM) to describe artefact shapes (e.g. [37,38]). While this mitigates the drawbacks of using
qualitative or discretized traits, landmark placement on artefacts nonetheless remains difficult [39].
Most recently, approaches using whole-outline GMM—which is entirely independent of landmark
placement and richly describes artefact shape—have been benchmarked against previous studies
[40]. While the conceptual basis for using such continuous characters (e.g. principal components) in
phylogenetic analyses has been firmly established [41–45], pipelines for actually doing so within a
Bayesian framework have hitherto been lacking [46–48], stymieing both organismal and artefactual
phylogenetics. Fresh developments in Bayesian phylogenetics—specifically the development of the
computational environments of BEAST2 [8] and RevBayes [9]—now offer flexible analytical pipelines
that facilitate the construction of phylogenies from continuous characters (e.g. [49]). Furthermore, we
now have statistically coherent models for the analysis of sampling data through time.

Models that combine diversification and sampling processes have also undergone massive
development over the past decade. Within palaeobiology, a significant step forward was the intro-
duction of the fossilized birth–death (FBD) process [50,51]. This model explicitly includes the fossil
sampling process, which accounts for the possibility that extinct samples can appear in the tree as tips
or samples along internal branches (sampled ancestors). The FBD process has already been applied
to study language evolution (e.g. [52]), and here, we apply this model for the first time within an
archaeological context. The use of phylodynamic models further expands the information we can obtain
from phylogenetic trees. While phylogenetics seeks to estimate the evolutionary relationships among
samples, phylodynamics seeks to estimate variation in the dynamics that generated our trees [53]. For
example, skyline birth–death process models allow for variation between discrete time intervals in
the diversification and sampling rates [54]. Applied within a Bayesian framework, we can account for
uncertainty in the tree topology and divergence times, meaning we can characterize the diversification
dynamics without perfect knowledge of the underlying phylogeny. Phylodynamics is often applied in
the context of epidemiology where, for example, low mutation rates might prevent us from inferring
a fully resolved transmission tree, but we can still estimate variation in transmission rates [55]. In
the context of macroevolution, we can apply the FBD skyline model to obtain estimates of speciation,
extinction and fossil sampling rates through time [56].
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Our study reports on the very first such application of phylodynamics to archaeological data,
specifically to knapped stone projectile points from the European Late Upper Palaeolithic (LUP). The
European LUP (ca 15–11.5 ka BP) falls into a time of extremely volatile climate and changing environ-
ments. The period starts at the end of the Last Glacial Maximum (GS−2), which is followed by a phase
of abrupt warming (GI−1), in which icesheets regressed significantly, new landscapes opened up, and
flora and fauna underwent considerable changes. Following one-and-a-half millennia of intermittent
warming, this interglacial was cut short by the onset of Greenland Stadial 1 (GS−1) at approximately
12.9 ka BP, with a deterioration in climate and the return to very cold, dry and windy conditions,
particularly in northern Europe. With the termination of this stadial at approximately 11.7 ka BP, the
Pleistocene ended, and the Holocene began (figure 1; [57]).

Archaeologists have long studied the impact of climatic changes on human communities during
this time (e.g. [58–60]). In comparison with preceding periods of the European Upper Palaeolithic—
the iconic Magdalenian—it is argued that the LUP underwent both simplifications of and losses
in technology [61] as well as, eventually, a diversification of regional forms. Such assessments are,
however, derived chiefly from studies conducted at the scale of sites or regions. Yet, it is arguably at
the macro-scale at which the archaeological record can truly shine (e.g. [62]). In fact, previous studies
comparing LUP cultures and artefact forms quantitatively across European regions have already
shown that many traditional archaeological cultures are beset by issues of epistemic or empirical
inadequacy (e.g. [63–66]).

Despite the evident benefits of macro-archaeological studies—especially when combined with
cultural evolutionary theory—these remain rare [67]. The often regionally bespoke and mutually
incompatible classifications of archaeological material constitute a major barrier to trans-regional,
macro-scale studies. The complex socio-political landscape of past and present Europe further
complicates the situation, with the result being a patchwork of archaeological cultures whose analytical
utility varies [64,68]. A recent initiative has tested the robustness of these existing archaeological
cultures empirically [66], and in doing so, collated an extensive dataset covering many key sites of
the European LUP [69]. Our analysis draws on this dataset, but we restrict our analysis to a highly
resolved subset of chronologically constrained artefacts, namely projectile points, from such key sites.
Based on the tanged/stemmed design of these projectile points, it is reasonable to assume that they
were axially hafted and that they served as the working end of hunting weapons that were ostensibly
instrumental in the adaptations of these Terminal Pleistocene communities, and that the specifics of
their design also reflect aspects of cultural transmission. In focusing on artefact form, we do not deny
the utility of discrete (often qualitative) traits—motivated by and derived from detailed technological
analyses (cf. [70,71])—in building artefact phylogenies. Large and representative datasets of such traits
tested for intra- and inter-observer bias do not exist at present, however. Moreover, artefact shape
remains one of the critical phenomenological traits used to distinguish many, if not most, projectile
types, underlining the powerful yet mostly untested role that this trait alone plays in traditional
cultural taxonomy.

Building on previous work [49], we here take initial exploratory steps towards the Bayesian
phylodynamic inference of stone tool phylogenies. A vital contribution here lies first in the bench-
marking of these computationally demanding methods, the different models, the data and their
interaction. Second, inferring a Bayesian phylogeny from artefact shapes directly without any a priori
cultural associations opens up the possibility for the macro-scale study of cultural evolution, including
a direct quantitative assessment of the rates of artefact lineage diversification and extinction, and
morphological disparity [72]—especially so across the climatically volatile periods of the Terminal
Pleistocene, across the many transitional cultural phases, and across the many topographically and
biogeographically variable regions of Europe. Our results offer new data-driven insights into the
cultural evolutionary dynamics at the end of the Pleistocene in Europe. Notably, the resulting artefact
phylogeny maps onto patterns of human dispersal where isolation by distance and climate pressure
result in diversification, whereas periods of climatic amelioration and population growth appear to be
characterized by a loss of diversity in artefact forms. Our results also align, albeit not perfectly, with
recent palaeogenomic results [73] that suggest relations between southern and central Europe.
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2. Material and methods
2.1. Artefacts and outline data
We draw upon a published dataset [69] containing European Late Palaeolithic/earliest Mesolithic lithic
technology, toolkits and artefact shapes together with their associated metadata. This dataset had been
designed for the study of stone tool technology and artefact shape evolution across Europe for the time
frame of approximately 15–11 ka BP. It contains, among other data, the two-dimensional outline shapes
of 3512 expert-sourced projectile points stemming from key archaeological sites (figure 2).

Lithic projectile points have long played a major role in the periodization of the Late Palaeo-
lithic/earliest Mesolithic of Europe, and in inferring the ‘ethnogeographic variability’ [74] of presumed
contemporaneous communities. Likewise, they are commonly linked to specific hunting strategies, and
changes in projectile point forms are interpreted to index changing adaptations. By the same token and
with reference to ethnographic observations that link different projectile point shapes to community
identities (e.g. [75–77]), lithic point shapes are used by many archaeologists as paradigmatic cultural
markers in much the same way that index fossils are used in biostratigraphy. These insights are
supplemented with archaeological reconstructions of social learning scenarios that arguably docu-
ment the transmission of knowledge and know-how from elders to youngsters in this period [78–
81]. Through meticulous refitting and technological reverse engineering, these studies suggest that
particular stone-working recipes—operational schemata—were passed from generation to generation
[82]. In this way, artefact shapes may reflect parts of such recipes and can hence be used to infer
transmission histories [33,83,84]. In contrast to many lithic artefacts, whose evolution has hitherto
been addressed using phylogenetics, the European LUP stone points appear to have been expedient
components in the total weapon system; they were replaced rather than resharpened upon breakage.

After a thorough quality assessment of those shapes, we retained a subset of 985 complete
armatures—overwhelmingly unifacial projectile tips manufactured on blades—from sites for which
radiocarbon dates are available and whose dating quality was deemed ‘reliable’ (i.e. dates derived
from stratified, in situ layers, in the [69] dataset). For each unique key site/layer combination
with radiocarbon dates available, we randomly drew one single specimen, resulting in 87 artefacts
representative of the whole research area (figure 3). This way of subsampling reflects the assumptions
of the FBD process, assuming a Poisson sampling process along each lineage or branch. This means
that a given lineage can only be sampled once at any given time point. All artefacts from the same
unique key site/layer combination can be considered equivalent to abundance data in palaeontology.

–36
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GI-1 GS-1 Holocene

–40
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Figure 1. Fifty-year means of NGRIP δ18O levels in per mille for the time frame in question together with the Dansgaard–Oeschger
Events highlighted in grey. A 1‰ change corresponds to a ca 3°C change in temperature [57]. GS−2: Greenland Stadial 2, ca
22.9–14.7 ka BP; GI−1: Greenland Interstadial 1, ca 14.7–12.9 ka BP; GS−1: Greenland Stadial 1, ca 12.9–11.7 ka BP; Holocene, from
ca 11.7 ka BP.
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This means we have multiple individuals per lineage at a given locality/layer, corresponding to a single
point or short interval in time.

Using the R [85] package Momocs [86], we extracted the two-dimensional whole outlines from all 87
artefacts and combined them with their metadata. As necessary, artefacts were manually reoriented to
a standardized direction, and the outlines were centred and scaled. Elliptic Fourier transformation was
applied to describe the artefacts’ shape contours in harmonics. The first point of the outlines was set to
be homologous. We used 28 harmonics to describe 99.9% of the harmonic power. These data were then
transferred via a principal components analysis (PCA) for dimensionality reduction to arrive at new,
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Figure 2. The study region with available key site/layer combination per time bin, showing today’s coastlines. The map is
chronologically separated according to the Dansgaard–Oeschger Events [57] into Greenland Stadial 2 (GS−2), Greenland Interstadial
1 (GI−1), Greenland Stadial 1 (GS−1) and Holocene. 1: Slotseng C, 2: Poggenwisch, 3: Pin Hole Cave, 4: Klementowice 20, 5: Sun
Hole, 6: Gough’s Cave, 7: Wilczyce 10, 8: Bois Laiterie, 9: Trou de Chaleux, 10: Hostim, 11: Kulna 6, 12: Pekarna, 13: Helga Abri, 14:
Felsställe, 15: Zöld, 16: Nadap, 17: Bois Ragot, 18: Bois Ragot 5, 19: Murat, 20: Murat, 21: Santimamine Slnc, 22: Parco II, 23: Slotseng
B, 24: Ahrenshöft LA 58d, 25: Rotnowo 18ll, 26: Meiendorf, 27: Mother Grundy’s Parlour, 28: Robin Hood’s Cave, 29: Weitsche, 30:
Mirkowice 33, 31: Westelbeers ZW, 32: Rekem, 33: Pixie’s Hole, 34: Three Holes Cave, 35: Kent’s Cavern, 36: Nowa Biala 1, 37: Kulna 4,
38: Le Closeau 4, 39: Étiolles Q31, 40: Rocher de l’Impératrice, 41: Zigeunerfels FG, 42: Zigeunerfels DE, 43: Elsbethen, 44: Unken, 45:
Seewände, 46: Abri Neumühle, 47: Grotte de Bichon, 48: Hauterive-Champréveyres, 49: Grotta Clusantin, 50: Riparo Dalmeri 15, 51:
Riparo Dalmeri (upper layers), 52: Anton Koba VIII, 53: Hort de la Boquera, 54: Roureda, 55: Lapa dos Coelhos 4, 56: Lapa dos Coelhos
3, 57: Bromme, 58: Trollesgave, 59: Rotnowo 18, 60: Wojnowo Acut III 75, 61: Witow 5C (assemblage 1), 62: Milheeze Hutseberg 2, 63:
Kochlew 1, 64: Remouchamps, 65: Le Closeau 14, 66: Altwasser, 67: La Cogola SU 19, 68: Palu Echen, 69: Port de Penne, 70: Perro 2, 71:
Los Azules Unit 3, 72: Peña 14, 73: Fariseu 4, 74: Fariseu SU 4, 75: Cingle de l’Aigua, 76: Syltholm VII, 77: Star Carr, 78: Kabeliai 2, 79:
Bolkow 1, 80: Three Ways Wharf C West, 81: Alizay, 82: Bad Buchau Kappel, 83: Jägerhaushöhle Schicht 13, 84: Romagnano III (Layer
A-E), 85: La Cogola SU 18, 86: Filador 4, 87: Bocas 0.
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de-correlated variables. This resulted in 87 principal component axes to describe 100% of the outlines’
variation (figure 4a). Figure 4b shows the specific shape aspect captured by the first nine PC axes.

2.2. Radiocarbon dates
Radiocarbon dates for the sites were collected from the Radiocarbon Palaeolithic Europe Database [87],
and other site-relevant literature cited in the original dataset [69]. All radiocarbon dates were inspected
for reliability both in the context of the original data compilation [69] and again for the present paper.
The dates were then calibrated in R using the rcarbon package [88] and the IntCal20 calibration curve
[89]. For each unique key site/layer combination, we calculated the summed probability distributions
(SPDs) using the same package. For models without age uncertainty, the median age of the calibrated
SPD was used as the single age to which each key site/layer should be dated. For models with age
uncertainty, described below, the minimum and maximum of the one-sigma region of the calibrated
SPD was used for the range of uncertainty for each key site/layer’s date (figure 5).

2.3. Phylodynamic inference
One of the most important advantages of a Bayesian phylodynamic framework is its flexible modular
model-based nature. For inferring dated trees and evolutionary rates, we can use a tripartite model
[6,90,91], which combines a character, clock and tree model within a single Bayesian analysis. The
character model provides a model of phylogenetic character or trait evolution and is needed to
calculate evolutionary distances or disparity. The clock model describes how the substitution rate

GS–2 GI–1

GS–1 Holocene

Figure 3. Panel visualizing the 87 selected artefacts, chronologically separated according to the Dansgaard–Oeschger Events (see
figure 1). The artefacts have been subsampled from the database published in [69], reoriented, centred and scaled. Each of the
artefacts represents one unique key site/layer combination for which radiocarbon dates were available. In this visualization, the scales
vary between the sub-plots.
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varies across the tree. The tree (phylodynamic) model describes the process of branching (birth),
extinction (death) and lineage sampling that generated the tree. It is the tree model that incorporates
age information, which, combined with the clock model, allows us to transform evolutionary distances
into time. We can also estimate the phylodynamic parameters associated with the tree model, including
variation in rates through time.

2.3.1. Tree model

For our tree model, we chose the FBD process [50,51]. We estimated a time-calibrated tree using
the Bayesian phylogenetic software BEAST2.6 [8], using the FBD tree model, which combines the
diversification (birth, death) and sampling processes. The FBD model allows for the explicit incorpora-
tion of fossil samples, i.e. specimens sampled before the present (t = 0). Samples with t > 0 can either
appear on terminal branches (tips) or along branches as sampled ancestors, and their placement can
be estimated during inference using the sampled ancestors (SA) package [56]. The model can be used
for phylogenetic tree inference of extinct and extant samples or extinct samples only. The FBD process
allows us to use the age information of all artefacts and jointly estimate trees and diversification rates.
We used the ‘canonical’ parametrization, with priors on the birth, death and sampling rate parameters.
For each of these parameters we use an exponential prior, Exp(10), with a mean of 0.1. The birth rate (λ)
is the rate at which new lineages are added to the tree. The death rate (μ) is the rate at which lineages
are terminated. The fossil sampling rate (ψ) is the rate of sampling-through-time along lineages, i.e. for
samples, t > 0. An exponential distribution places most of the prior probability on values close to zero
but the diffuse tail of the distribution does not preclude much larger values. This choice was based
on the order of magnitude of rates that are typically estimated in the context of macroevolution (e.g.
[92–94]). We set the extant species sampling probability (ρ) to zero, as all our samples existed before the
present (t > 0). We used a uniform prior on the origin time of the process, U(0, ∞).

2.3.2. Character evolution model

Continuous traits have been widely used for phylogenetic comparative analyses (i.e. studying trait
evolution along an existing time-calibrated tree) and have more recently also been used for tree
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Figure 4. (a) The cumulative percentage of variance explained by each individual PC axis. Here, the first nine PC axes capture 99% of
the total shape variation. (b) The shape variation along the PC axes.
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inference and divergence dating [47]. For BEAST2, the contraband package v. 0.0.1 was recently
developed [95], which we deployed to use a multivariate Brownian motion model to infer the
evolution of the continuous shape traits under the assumption of a random walk. This model has
three parameters that we estimated: the root values for each trait, the variance (or rate) parameter of
the Brownian motion process for each trait (σ2), and the among-character covariance. For the prior
on the root values, we used a normal distribution N(0, 2), for the variance parameter σ2, we used a
lognormal distribution LN(1, 0.3), and for the covariance parameter we used a uniform distribution,
U(−1, 1), following the examples in [95].

2.3.3. Clock model

For the clock model, we experimented with two separate relaxed clock models: The ULNC and the
nCat2 model. The ULNC model is an uncorrelated lognormal clock, which allows each branch rate
to be independent of the rates of its ancestors or neighbours. Under this model, the rate of any
particular branch is drawn from a lognormal distribution, with the mean and standard deviation of
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Figure 5. All selected key site/layer combinations with their associated median ages (dots) and age uncertainties (horizontal lines).
Each date is derived from the calibrated SPD of all available radiocarbon dates for each site/layer combination. For models with age
uncertainty, the one-sigma ranges of the SPDs were taken as the minimum and maximum ages. Otherwise, the median ages of the
SPDs were used.
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this distribution estimated from the data. We used an exponential prior on the mean rate, Exp(10), with
a mean of 0.1 and a gamma prior on the s.d. Gamma(0.54, 0.38), which has a mean of 0.2. These choices
reflect a prior belief that the overall clock rate and variance in the clock rate will both be relatively
low but it does not preclude alternative scenarios. The nCat2 model allows branches to be assigned
to different rate categories, in this case two rate categories. The rate category values and assignments
are estimated. For the prior on the rate values, we used an exponential distribution, Exp(5), with a
mean of 0.2. We used a uniform prior on the rate assignments, meaning each branch has a uniform
probability of being assigned to either rate category. In both cases, we assume that the overall clock rate
was shared across traits. Due to the independence in clock rates, it is possible for these kinds of clock
models to account for relatively accelerated bursts of morphological evolution along a given branch.

2.3.4. Skyline analysis

To estimate diversification (birth, death) and sampling rates in different time intervals, we used the
FBD skyline model from the BDSky package [56] in BEAST2. This model allows for piecewise constant
rate variation through time, meaning that discrete intervals have independent rates. For the skyline
models, we chose interval boundaries at 14 600, 12 900 and 11 700 BP to compare the rates between
the period before the end of the Last Glacial Maximum (GS−2), the Late Glacial Interstadial (GI−1), the
Younger Dryas (GS−1) and the early Holocene, respectively.

We parametrized the model using the birth (λ), death (μ) and sampling rates (ψ), as described
above, and calculated the diversification (d) and turnover (t) rates post hoc. The diversification rate is
the rate at which the tree grows and can be defined asd = λ − μ .

The turnover rate measures the rate at which lineages are replaced and can be define as

t = μλ .

Note that, d is within the interval (–∞, ∞) and t is within the interval (0, ∞). We calculated the median of
the estimated 95% highest posterior density (HPD) intervals for all rates (λ, μ, ψ, d, t) within each time
bin using the coda R package [96].

2.3.5. Specimen ages

As the specimens’ starting ages and/or fixed ages we chose the median age of each specimen, derived
from their respective calibrated radiocarbon SPDs. To account for age uncertainty associated with
specimens, we applied a uniform prior between the oldest and youngest radiometric dates of the
one-sigma age range from the SPD of the calibrated radiocarbon dates collected from each artefact’s
respective layer, as described above. An overview of the different scripts is given in the electronic
supplementary material, table S1. All ages were divided by 1000 and the results rounded to three
decimals.

2.3.6. Testing different combinations of taxa and traits

To study the influence of the number of taxa and traits on the clock rates, we ran several different
combinations of taxa and traits. For this, we created four different sets of taxa. One set contains all
available artefacts (87 taxa), and the other three datasets have been subsampled in a stratified way, to
contain comparable numbers of taxa per chronological interval (4, 8 and 16 per event), resulting in 16,
32 and 60 taxa, in addition to the dataset with 87 taxa. For each of these sets, we experimented with the
number of traits and selected the first 2, 3, 6, 9, 10, 20, 44 (corresponding to 50% of the total amount
of PC axes rounded up) and all PC axes (87) as traits. As figure 4a shows, 99% of the dataset’s total
variation is described by the first nine PCs, underlining the importance of experimenting with variable
trait numbers. Beyond the convenience that decreasing the number of traits reduces computing time
until convergence, importantly, a recent study [97] has also shown that the inclusion of more principal
components can lead to an increase in noise and an attendant reduction in phylogenetic signal.
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2.3.7. Markov chain Monte Carlo settings

For  each script,  we ran two independent  Markov chain  Monte  Carlo  (MCMC) chains  on a
high-performance  computing system for  as  many generations  as  it  took to  arrive  at  prior,
posterior  and likelihood effective  sample  size  (ESS)  values  all  above 200.  An ESS of  200
corresponds to  a  standard error  of  the  mean of  1.77% of  the  interval  width [98].  The ESS
value was calculated and convergence assessed using the  coda package [96]  in  R,  and Tracer
[99].  Depending on the  number  of  taxa,  traits,  moves  and model  specifications,  MCMC analyses
had to  run—for  each independent  run—for  a  range between 348 500 000  and 22 820 000 000
generations  before  convergence  was  reached.  Using logcombiner  [8],  we collated the  log-files
and the  tree-files  of  each pair  of  converged,  independent  chains,  with  a  20% burn-in.  All  further
analyses  were  conducted using the  combined log-  and tree-files.

To quantify and compare the influence of the different taxa–trait combinations on the clock rates, we
visualized the median clock rate of the ULNC model, as well as the variance in the overall clock rate, on
a taxa–trait grid using ggplot2 [100] (electronic supplementary material, figure S1; for the nCat2 model,
see electronic supplementary material, figure S2).

2.3.8. Running the models under the prior

For 16, 32 and 87 taxa, we ran the ULNC skyline model with age uncertainty ‘under the prior’, which
means we can obtain estimates of the diversification rates under the FBD model, while excluding the
influence of the trait and clock models. By excluding the trait information, we are able to distinguish
the signal that comes from the fossil sampling times, in the absence of any information from the traits.

2.3.9. Phylogenetic trees

Using the package TreeAnnotator [8], we calculated a maximum clade credibility (MCC) tree from each
combined output tree file keeping the target heights. Based on the MCC trees, we extracted various
metrics such as posterior clade probabilities (PP), median branch lengths and rates, and the lengths
of the 95% HPD range of the node heights representing age uncertainty. We visualized these metrics
across all different taxa–trait combinations for the skyline model with age uncertainty under the ULNC
model (figure 6).

3. Results
3.1. Increasing traits based on principal component axes decreases the evolutionary rate and

variance estimates
For complex phylodynamic inference, every parameter and prior choice requires careful consideration,
especially in the context of novel applications. We therefore tested how analyses using continuous
traits behaved in relation to the different parameters and model choices, and to investigate, whether
different models affect our ability to test certain hypotheses. Electronic supplementary material figures
S1A and S2A, show that for the ULNC and nCat2 models respectively, the median clock rate (the
overall rate at which traits evolve over time) is reduced with the addition of more traits. The high-
est median rates are recovered—with a few exceptions—from the dataset of 32 taxa and two traits.
Electronic supplementary material, figure S1B, shows the clock rate variance (i.e. the degree to which
rates vary across lineages) estimated under the ULNC relaxed clock model (see electronic supplemen-
tary material, figure S2B, for the nCat2 clock model). Here, the variance is highest for the subset
containing 60 taxa and two traits. Meanwhile, the variance is highest for the smallest number of traits
used (three for the ULNC model). The lowest variance in rates is recovered for the smallest subset of
16 taxa. We conclude that more traits contribute to an overall slower average rate of change. These
patterns match what we would expect from figure 4a, where each additional trait (PC) adds less and
less variation to the data.

Using the ULNC skyline model with age uncertainty, figure 6 summarizes different metrics derived
from the MCC tree model across the different taxa–trait combinations. Figure 6(a(i)–(iii)) shows that
the low PP values make it challenging to recover support for any specific topology. Further, the limited
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increase or even decrease in support with the addition of more taxa is partly attributed to the low
PP values, resulting in fewer recovered monophyletic groups across the posterior. The observation of
a slight increase with ntaxa = 9 may be a result of semi-randomly subsampled taxa, but confirmation
and further understanding would require simulations. The sub-plots in figure 6(b(i)–(iii)) visualize
the length of the age uncertainty range. With an increase in taxa, the overall mean age uncertainty
decreases, as well as the variance (figure 6(b(ii))). The addition of traits has the opposite effect because
the clock rates also decrease with the addition of more traits (figure 6(b(iii))). The addition of traits
seems to be particularly influential for datasets with few taxa (figure 6(b(i))). Median branch lengths
increase with the addition of traits, yet the overall median branch rates decrease with the addition
of taxa. Here too, the addition of traits seems to be particularly influential for datasets with few taxa
(figure 6(c(i))). The addition of traits reduces both the median branch rates and their variance (figure
6(d(iii))). Overall, median branch rates are higher for datasets with more taxa (figure 6(d(i),(ii))).

Figure 7 shows the MCC tree under the ULNC skyline model with age uncertainty. For illustrative
purposes, the dataset containing 16 taxa and nine traits was chosen. Like all other trees inferred for
this study, posterior clade probabilities are low. Nonetheless, the advantage of the Bayesian inference
of phylogenies—as conducted here—is that despite topological uncertainty we can use the data to
analyse rates of change in a skyline analysis.

3.2. Skyline analysis and rates of cultural evolution
Figure 8 shows the death, birth, diversification and turnover rates for the four chosen climate time
bins of the period before the end of GS−2, GI−1, GS−1 and the onset of the Holocene for the different
combinations of taxa and traits from the skyline analysis with age uncertainty under the ULNC model
(for the nCat2 model, see electronic supplementary material, figure S3). It shows that, although the
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Figure 6. Metrics derived from each MCC tree based on the ULNC skyline model with age uncertainty. (a) The posterior clade
probabilities, (b) the lengths of the 95% HPD range of the node heights, (c) the median branch lengths, and (d) the median branch
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magnitude of rates varies, the overall trend is stable across all trait combinations. Note the early
decline in the birth rate for all taxa–trait combinations in GI−1, except for the model using 16 taxa
and nine traits, where the birth rate first drops in the time bin GS−1. When comparing the death rates
between the different subsets of taxa, the median death rates and their variance are highest in GI−1
for the subset of 87 taxa, where they decrease again in the Holocene. These general tendencies can
also be found when running the same models under the prior, which allows us to exclude the trait
information, and study how much signal is generated from the age information per se (figure 9). This
general consistency indicates that the signal for the FBD model parameters is, in fact, coming from the
sampling times. Based on visual inspection alone, the results differ the most from the results obtained
under prior for the median birth rates of the subset of 16 taxa and nine traits.

The results of the skyline analysis depict a clear signal, more apparent with the addition of taxa, as
the higher birth rate for the period before the end of GS−2 could neither be guessed from the dates of
our sites (figure 5) nor from the prior, which was set to an exponential distribution with a mean of 0.1.
Hence, the results of the skyline analysis are robust to the number of taxa and traits.
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4. Discussion
The experimental  use  of  continuous traits  for  the  inference  of  Bayesian phylogenies  under  a
phylodynamic  model  (the  FBD skyline)  presented in  this  paper  is  novel  in  archaeology.  Until
recently,  the  phylogenetic  study of  archaeological  artefacts  has  largely  been limited to  the
inference  of  trees  using either  parsimony or  maximum likelihood approaches,  chiefly  relying
on discrete  and often somewhat  arbitrary  traits.  Not  only  do we infer  a  phylogenetic  tree  using
continuous data  within  a  Bayesian framework but  we also  incorporate  information about  the
age of  the  artefacts  by applying a  model  that  incorporates  sampling-through-time,  the  FBD
process.  In  doing so,  we were  able  to  derive  macroevolutionary metrics  such as  birth  and
death rates  through time.  The Bayesian framework formalizes  such a  model-based approach and,
importantly,  provides  a  measure  of  uncertainty  for  the  results.

Given the novel nature of this approach, much effort was put into exploring the impact of the
data on the different elements of our model, by adding complexity step-by-step. By benchmarking the
different models and the impact of changing numbers of taxa and traits, we found, that—for these
data, projectile point shapes from the European LUP in the form of PCs—the addition of many shape
aspects (PCs) contributed to an overall decrease in average rates of change and their variances. Our
results show that the number of taxa used has an impact on model performance as well. We see the
reason behind this in what is visualized in figure 4a, where each additional trait (PC) added captures
increasingly less variation in the data. Similar observations were made recently in the context of a
study using principal components as phylogenetic characters of single-cell gene expression data [97].
In our case, the conclusion to select as few traits as possible for the phylogenetic inference, to arrive
at maximal evolutionary rates, and to decrease noise in the data, would, in our view, be premature,
however. Choosing the model with the most taxa and the fewest traits, resulting in the highest rates,
would unduly limit the sampled design space of the artefacts available, as additional traits describe
distinct features of the LUP shape repertoire, such as ‘tanged’, ‘shouldered’ or ‘backed’ artefacts.
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Figure 8. Results of the skyline analysis with age uncertainty using the ULNC model for 16, 32 and 87 taxa with 2, 9 and 44 traits.
Visualized are the 95% HPD intervals and medians for the (a) death, (b) birth, (c) diversification and (d) turnover rates for the four
major climatic periods of the Greenland ice-core event stratigraphy [57]. The scale of the y-axes differs between each of the four
sub-plots.
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The low posterior clade probabilities across our inferred phylogenies overall preclude any firm
interpretations based on their topologies. Such topological uncertainty supports the argument that
existing archaeological taxonomies of the LUP—often predominantly based on artefact shape—are not
well-founded, as empirical studies have shown (e.g. [66]). That said, the broad contrast over time in
birth and death rates across changing climates may reflect changing mobility strategies and hence
population contact under cold and warm regimes, respectively. By the same token, and as already
noted by [40], LUP armature outlines may in general be relatively poorly suited for these kinds of
analyses due to the overall simplicity of the shapes and the seeming lack of normativity in form
imposition at this time. In contrast, the results of a companion study, using the outline shapes of
Late Neolithic/Early Bronze Age arrowheads deliberately shaped in the context of prestige display,
achieved overall higher posterior clade probabilities [49]. Phylogenetic analyses of lithic armatures
may achieve greater resolution by combining matrices consisting of qualitative traits related to their
manufacture and outline shape data. Although horizontal transmission and information sharing across
cultural lineages could complicate the phylogenetic signal, it is not possible to test this hypothesis
using our modelling framework. Future research examining this aspect of cultural evolution could
explore the use of network-based inference tools (e.g. Neighbor-Net [103]). However, network analysis
in combination with the FBD model is not currently possible, and using networks to visualise historical
relations with considerable time-depth also harbours a range of conceptual challenges (cf. [104]).

Despite the topological uncertainties of the trees, we can legitimately deploy the inferred results
to analyse the data at the macro-scale—a key advantage of Bayesian phylodynamic models. Birth
and death rates were inferred through a skyline analysis for the four distinct climatological time
bins representing warming and cooling events within the temporal scope of this study, that is the
end of GS−2, GI−1, GS−1 and the onset of the Holocene. Birth rates were highest at the end of
the Last Glacial Maximum (GS−2) and declined in the following time bins. High innovation rates
under climate-induced pressure have been observed elsewhere [105,106], while the rapid expansion
of hunter-gatherer communities at this time may also have led to isolation by distance. Death rates,
in contrast, were lowest in GS−2 and increased in GI−1 and GS−1, before decreasing again at the
beginning of the Holocene. The consistent association of artefacts whose traditional labels assign
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Figure 9. Results from under the prior of the skyline analysis with age uncertainty using the ULNC clock model for 16, 32 and 87
taxa with 2, 9 and 44 traits. Visualized are the 95% HPD intervals and medians for the (a) death, (b) birth, (c) diversification and
(d) turnover rates for the four major climatic periods of the Greenland ice-core event stratigraphy [57]. See figure 8.
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them to the so-called Epigravettian—a southeastern phenomenon—and the Azilian and Federmesser
cultures—more northwestern phenomena—aligns well with recent palaeogenomic results [73] that
would suggest a genetic relation between precisely those units.

5. Conclusion
This paper is the first effort in inferring Bayesian phylogenies from continuous lithic armature outline
shape data under a phylodynamic model. The analysis conducted using the FBD skyline model is a
first step into the realm of greatly expanded analytical possibilities for studying stone tool evolution in
a macro-archaeological way. The reproducible and modular workflow provided here can now be used
and expanded in a myriad of ways. For example, future studies could be dedicated to the evaluation of
the most likely models of shape evolution and compare models other than Brownian motion [41,107],
such as the Ornstein–Uhlenbeck process [108–110] or an Early Burst model [111,112]. Furthermore, it
could be tested whether the robustness of the phylogenies changes with the inclusion of additional
data, such as biogeographic information, or in combination with other phylogenetic sources, such as
language- or ancient DNA-based phylogenies. Combining qualitative technological traits and shape
data would also doubtlessly improve phylogenetic inference, although such data remain difficult to
obtain in adequately large sample sizes and lingering issues of intra- and inter-observer
variability remain [113]. The choice of artefacts could be evaluated, too, and more evidently standar-
dized artefacts than the ones of the LUP, such as the lithic projectile points of the Neolithic, or even
pottery profiles could be taken into service. Once robust artefact phylogenies are in place, the extensive
analytical repertoire that phylogenetic comparative methods offer, such as testing the association
between artefact shape and their size, and/or with favoured prey species as inferred from associated
faunal data, could also be taken into use. Finally, the reconstruction of explicit artefact phylodynamics
as explored here offers exciting opportunities for analysing genetic and artefactual data in parallel.
Both approaches are underwritten by explicit generative models of change—genetic and cultural
evolution respectively—and share common methodological features. It might thereby become possible
to conduct explicit gene-culture co-evolutionary analyses in these very remote periods of the human
past.
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