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Abstract

Objectives: Body size and composition vary widely among individuals and

populations, and long-term research in diverse contexts informs our understanding of

genetic, cultural, and environmental impacts on this variation. We analyze longitudi-

nal measures of height, weight, and body mass index (BMI) from a Caribbean village,

estimating the extent to which these anthropometrics are shaped by genetic variance

in a small-scale population of mixed ancestry.

Materials and Methods: Longitudinal data from a traditionally horticultural village in

Dominica document height and weight in a non-Western population that is

transitioning to increasingly Westernized lifestyles, and an 11-generation pedigree

enables us to estimate the proportions of phenotypic variation in height, weight, and

BMI attributed to genetic variation. We assess within-individual variation across

growth curves as well as heritabilities of these traits for 260 individuals using Bayes-

ian variance component estimation.

Results: Age, sex, and secular trends account for the majority of anthropometric vari-

ation in these longitudinal data. Independent of age, sex, and secular trends, our ana-

lyses show high repeatabilities for the remaining variation in height, weight, and BMI

growth curves (>0.75), and moderate heritabilities (h2height = 0.68, h2weight = 0.64,

h2BMI = 0.49) reveal clear genetic signals that account for large proportions of the

variation in body size observed between families. Secular trends show increases of

6.5% in height and 16.0% in weight from 1997 to 2017.

Discussion: This horticultural Caribbean population has transitioned to include more

Westernized foods and technologies over the decades captured in this analysis. BMI var-

ies widely between individuals and is significantly shaped by genetic variation, warranting

future exploration with other physiological correlates and associated genetic variants.
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1 | INTRODUCTION

Variation in body size and child growth is shaped by combinations of bio-

logical, cultural, and environmental factors that are often ecologically

dependent and population-specific. Body size and growth patterns vary

widely among populations in developing countries and small-scale socie-

ties (Walker et al., 2006), many of whom are transitioning nutritionally

and behaviorally to more Westernized, processed foods and decreased
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physical activity (Popkin, Adair, & Ng, 2012). Metabolic health is of

increasing concern in the Caribbean, yet we know little of the specific

biological, cultural, and environmental influences on anthropometric vari-

ation in this region, particularly in rural areas (Boyne, 2009; Rueda-

Clausen, Silva, & López-Jaramillo, 2008). Longitudinal measures of height,

weight, and body mass index (BMI) reflect secular trends in human

growth and development (Cole, 2003) and inform public health concerns

of undernutrition and overnutrition (Monteiro, Conde, & Popkin, 2004).

We assess the repeatabilities and heritabilities of longitudinal height,

weight, and BMI in a remote Caribbean village during a period of nutri-

tional transition to quantify variation within-individual growth trajecto-

ries and to estimate the proportion of variation between individuals

attributed to genetic versus nongenetic variance.

Body size and composition vary among geographic regions

(de Onis, Blössner, Borghi, Frongillo, & Morris, 2004), in part reflecting

climate adaptations such that temperature and BMI generally show

inverse relationships in indigenous populations (Wells, 2012). Small-

scale societies that share similar tropical climates show considerable

variation among their growth patterns, shaped partially by life-history

trade-offs that balance growth rates with mortality risk and fertility to

produce taller individuals through faster growth (Walker et al., 2006).

The extent to which height, weight, and BMI are phenotypically plas-

tic depends upon genetic variants, environmental inputs, and

developmental/epigenetic backgrounds (Godfrey, Gluckman, & Han-

son, 2010). The relative impacts of these factors vary within and

between populations as well as across age over the course of the

human lifespan (Visscher, Hill, & Wray, 2008).

Heritabilities quantify the proportions of variation in observed

phenotypes that are explained by genetic variation in a population

(Falconer, 1960; Lynch & Walsh, 1998). Heritability estimates do not

reflect the extent to which a trait's phenotypic outcome is determined

by an individual's genes, but instead partition the variance in an

observed trait into genetic and nongenetic components (Lewontin,

1974; Vitzthum, 2003). Methods for estimating heritabilities use

known genetic relationships to assess the extent to which the propor-

tion of alleles shared among individuals associates with phenotypic

variation (Vandemark, Kelly, & Eckhardt, 1985), and larger pedigrees

with many generations provide varied kinship coefficients that pro-

duce more robust estimates of genetic variance than those based on

only ancestor–descendant pairs, sibships, and so on (Kruuk, 2004;

Wilson et al., 2010).

Quantities of phenotypic and genotypic variation are population-

specific, and heritability estimates range from 0.26 to 0.90 for height,

0.22 to 0.85 for weight, and 0.17 to 0.90 for BMI (Dubois et al., 2012;

Elks et al., 2012; Nan et al., 2012; Starkweather & Keith, 2018; Yang

et al., 2015). Few heritabilities are published from Caribbean

populations, but an analysis from Jamaica reports estimates of 0.74

for height, 0.63 for weight, and 0.53 for BMI (Luke et al., 2001). Larger

heritabilities can result from larger quantities of genetic variation or

from relatively low amounts of environmental variance. The propor-

tional impact of genetic variance generally increases under stable and

more favorable environmental conditions (Hoffmann & Merila, 1999);

however, heritabilities may also decrease when environmental

conditions change drastically between generations. Lower anthropo-

metric heritabilities in some immigrant populations reflect the

context-dependent nature of genetic variance components when

environmental conditions differ dramatically between ancestors and

their descendants (Gravlee, Bernard, & Leonard, 2003). Across the

lifespan, Elks et al. (2012) found higher heritabilities for BMI in twin

children than adult twins but found no detectable relationships

between BMI heritability and age among other types of family studies.

We estimate heritabilities for height, weight, and BMI in a Caribbean

village population to capture the proportional influence of genetic var-

iance on body size and child growth during a population-wide period

of nutritional transition using longitudinal anthropometric data.

Longitudinal data require within-individual analyses to account for

variation in repeated measures over time in addition to between-

individual analyses of phenotypic variation. Repeatabilities reflect

how consistent traits remain for an individual as they age by

regressing an individual's measurements against themselves over time,

and any aspects of an individual's identity (including genetic and non-

genetic attributes) that impact the observed phenotypes are captured

in repeatability ratios (Wilson et al., 2010). Repeatability estimates

generally indicate the upper limits for heritability estimates in a popu-

lation given that individuals share 100% of their genetic variation with

themselves (Dohm, 2002; Falconer & Mackay, 1996). Our repeatabil-

ity estimates of height, weight, and BMI measure phenotypic variation

within-individual growth curves during a period of nutritional and

behavioral transition.

We expect repeatabilities and heritabilities to be higher for height

than for weight or BMI given that height is less variable as an additive,

long-term measure that remains constant once adult height is reached

until substantial bone loss occurs at elderly ages (Dey, Rothenberg,

Sundh, Bosaeus, & Steen, 1999). Weight and BMI are constrained by

height but can fluctuate in response to short-term conditions across

the lifespan. BMI is a composite measure of height and weight used

to define clinical underweight, overweight, and obese categories

despite its variable relationship with adiposity and metabolic health

across ethnicities/ancestries (Carroll et al., 2008; Hall & Cole, 2006;

Prista, Maia, Damasceno, & Beunen, 2003). BMI remains a readily

available metric of body size that may be more useful in diverse

populations when tracked longitudinally over time to assess

population-specific trends in changing body mass rather than relying

on standardized cut-offs to categorize metabolic status (Hall & Cole,

2006). We capture secular trends in height, weight, and BMI from

1997 to 2017 in rural Dominica to assess how the global nutrition

transition (Popkin et al., 2012) has influenced growth and body size in

a small-scale horticultural population.

Body size, composition, and metabolic health in the Caribbean are

uniquely impacted by sugar cultivation, other aspects of historic colo-

nialism, alcohol production, tourism, and recent economic transition

(Cherry, Serieux, Didier, Nuttal, & Schuster, 2014; Mintz, 1985). Meta-

bolic health is an increasing concern in this region as cardiovascular

disease and type II diabetes climb in prevalence (Rueda-Clausen et al.,

2008). Sugar was widely cultivated throughout the Caribbean from

the 18–20th centuries, mostly for export to European countries who
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transported slave labor to the islands from west Africa in the 17–18th

centuries (Mintz, 1985). Sugarcane is still grown throughout much of

the Caribbean, and gene flow from Europe and Africa into indigenous

Caribbean communities continues to shape genetic variation through-

out the region. Middle-income/wealthier Caribbean nations such as

St. Lucia report negative metabolic outcomes characteristic of the

global nutrition transition (Popkin et al., 2012) that result from

decreasing physical activity levels, increased alcohol consumption,

urbanization, and changing diets due to imports and increased tourism

(Cherry et al., 2014). Poorer, less developed Caribbean nations appear

to be suffering similar health outcomes, but their data are sparse and

secular trends poorly understood, particularly in rural areas

(Boyne, 2009).

The Commonwealth of Dominica is one of the least developed

Caribbean islands, and the village of Bwa Mawego is one of the most

remote communities on the island. There are approximately 500–600

residents in Bwa Mawego, most of whom continue to practice tradi-

tional horticulture in tandem with increased access to cash goods and

modern technology (e.g., cell phones, high-speed internet) (Decker &

Flinn, 2011). Several varieties of taro, yams, and other root vegetables

are the primary components of the traditional diet, which are boiled

and eaten with plantains, other crops, and sometimes fish (Quinlan,

2004). Observational data from several decades of research at this

field site indicate that processed foods, sweets, sugary beverages, and

meat are increasingly available in local rum shops, transforming diets

population-wide to include a combination of horticultural products

and foods with more caloric sweeteners, oils, and animal products

since the 2000s. Coinciding with dietary shifts characteristic of the

global nutrition transition (Popkin et al., 2012), the transport of piped

water and electricity to most homes in the village as of the early-mid

2000s has decreased physical activity demands (Decker & Flinn,

2011). We analyze longitudinal anthropometric data spanning

20 years (1997–2017) by capturing secular trends in growth curves

during this transitional period and estimating the relative influence of

genetic variation on observed variation in height, weight, and BMI.

2 | MATERIALS AND METHODS

Longitudinal anthropometric data were collected in Bwa Mawego,

Dominica at varying time points between 1997 and 2017 in accor-

dance with procedures approved by the University of Missouri's Insti-

tutional Review Board. All participants provided informed consent,

and parental consent was also obtained for all individuals under the

age of 18 at the time of data collection.

This study includes data for 260 individuals (126 males and

134 females) for whom there were repeated measures of height and

weight over the study period that met our quality-control criteria,

and ages of this sample range from birth to 27 years (Table 1). The

number of repeated measures per individual ranges from 2 to 16 with

a mean of 7.56, and the average time between a person's data points

is 0.90 years, ranging from 4 months to 10 years (Table 1). The height

of individuals old enough to stand upright was measured with a

stadiometer on a flat surface; those too young to stand were laid on a

flat surface and measured to the nearest millimeter by stretching a

tape measure from heel to crown. Weight was measured using an

electronic scale, and children too young to be weighed independently

were weighed with a parent, whose weight was then subtracted from

the combined total.

Growth data were visually inspected and cleaned using the Sitar

package in R v.3.4.3 to account for errors in data collection over the

20-year study period and to remove outliers exceeding three standard

deviations in an individual's growth curve (Cole, 2015; R Core Team,

2017). BMI was calculated using the standard equation (weight (kg)/

height (m)2). A pedigree that includes 11 generations was compiled

for this village in the 2000s from interview data and historical records

(Quinlan & Hagen, 2008), providing kinship coefficients needed for

estimating trait heritabilities (Table S1; Figure S1).

We used Bayesian linear mixed models (LMMs) to analyze repeat-

abilities, heritabilities, and secular trends in longitudinal height, weight,

and BMI among the sample of Bwa Mawego residents described

above. Height, weight, and BMI were log-transformed to account for

heteroscedasticity as variation increases in these variables with age.

All LMMs included three fixed effects as control variables: age

modeled as a cubic spline with knot points at 7 and 12 years, sex, and

year of data collection (z-scored). This cubic polynomial spline allowed

us to control for age across different stages of growth such that the

relationships between anthropometrics and age later in adolescence

were not impacted by trends very early in childhood, balancing com-

plexity in different stages of growth with flexibility in a smooth curve

that eases linear model fit (Buja, Hastie, & Tibshirani, 1989; Harrell,

2001). Knot points at 7 and 12 years divide the age range approxi-

mately into thirds, also bracketing the beginning and end of the juve-

nile period (Bogin & Smith, 1996). The inclusion of data collection

year in these LMMs controlled for secular trends across the

1997–2017 timespan during which these longitudinal data were col-

lected. This captured period effects independently from the effects of

individual aging and indicates how height, weight, and BMI have chan-

ged among younger generations across this population during a period

of nutritional and behavioral transition.

Repeatability LMMs included individual ID as a random effect,

producing variance component estimates that measure the amount of

variation in growth curves for height, weight, and BMI explained by

an individual's ID, thereby capturing within-individual variation over

time. Heritability models included two random effects: an ID variable

to control for repeated measures and a second “identity” variable to

connect each individual to the population's pedigree. This second ran-

dom effect produced estimates of additive genetic variance by using

Mendelian rules of allele sharing between individuals to explain the

observed variation between their heights, weights, and BMIs indepen-

dent of any variation within-individual growth curves.

This method of estimating heritabilities is referenced as the “ani-

mal model” and uses complex multigenerational relationships (parents,

siblings, half-siblings, grandparents, cousins, etc.) to capture the extent

to which proportions of shared alleles influence the variance in

observed traits (Kruuk, 2004; Teplitsky et al., 2008). This provides
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more robust heritability estimates than other common methods that

rely on only two generations of parent-offspring relationships or

single-generation twin studies. The pedigree for this village population

in Dominica goes back 11 generations, ensuring that we capture as

many kinship coefficients as possible, including relationships between

more extended kin that are less likely to share common household

environments (Table S1; Figure S1).

Although animal models allow for the inclusion of random house-

hold effects (Thomson et al., 2018), we do not include common

household environment as a variance component in our models

because of the flexibility and fluctuation in household composition in

this matrifocal community. Households in Bwa Mawego fluctuate in

composition as both children and adults change residence frequently

related to short-term economic opportunities, temporary migrations,

and changing family dynamics (Quinlan, 2004). Many people in this

sample resided in more than one household over the timespan of their

data points. In many cases, “households” are not discrete units, as

many dwellings are organized to varying degrees into larger com-

pounds with extended kin (Quinlan & Flinn, 2003). Additionally, the

extensive depth of this population's pedigree reduces confounding

effects of common environments since many smaller kinship coeffi-

cients contribute to estimates of genetic variance between relatives

who do not share household environments.

Bayesian LMMs produce posterior probability distributions of

fixed effect beta coefficients and random effect variance components

by updating prior probability distributions with data (McElreath,

2015). This method of linear modeling is robust to sample size and

accommodates complexity in regression-based analyses by controlling

for repeated measures and accounting for other sources of heteroge-

neity that vary among individuals (Zhao, Staudenmayer, Coull, &

Wand, 2006). Fixed effects such as age and sex are simultaneously

incorporated in a multivariable fashion such that the coefficients of

each variable are measured independently from the rest. We captured

Bayesian posterior distributions of repeatability and heritability vari-

ance components using Markov chain Monte Carlo sampling with the

MCMCglmm package in R (Hadfield, 2010). This method samples pos-

teriors in a step-wise fashion rather than directly computing distribu-

tions in their entirety, which becomes less feasible as models increase

in their complexity (McElreath, 2015).

All LMMs ran for 5,200,000 iterations with a burn-in of 200,000

and thin of 5,000 to produce 1,000 estimates of within-individual var-

iance and additive genetic variance of height, weight, and BMI from

the posteriors. We used parameter expanded priors for all models to

facilitate chain mixing and obtain sufficient effective sample sizes

(>900) by setting prior means to 0 (alpha.mu = 0) and prior covariance

matrices to 1,000 (alpha.V = 1,000) (Hadfield, 2010). Repeatabilities

and heritabilities were calculated as variance component ratios, also

representing 1,000 retained samples from the posteriors. Repeatabil-

ity estimates reflect the proportion of total variation in each outcome

due to the random effects of individual IDs (Equation 1), controlling

for the fixed effects of sex, age, and data collection year. Heritability

estimates reflect the proportion of phenotypic variation in each out-

come captured by the additive genetic variance components derived

from each individual's relatedness to everyone in the pedigree, also

controlling for repeated measures, sex, age, and data collection year

(Equation 2).

r =
VI

VI +Ve
ð1Þ

h2 =
VA

VA +VI +Ve
ð2Þ

VI is the vector of 1,000 retained ID variance components that cap-

ture within-individual variation, VA is the vector of additive genetic

variance components, and Ve is the vector of residuals in each model.

Ratios of these vectors produced 1,000 estimates of either repeatabil-

ity or heritability for each outcome from which we report posterior

modes and credible intervals.

3 | RESULTS

The pedigree from Bwa Mawego, Dominica includes 1,455 individuals,

spans 11 generations, and dates back to 1899 (Figure S1). We have

longitudinal growth data for 260 of those individuals, and the 662 peo-

ple marked by dots in Figure S1 show the members of the pedigree

who are related to them such that they contribute to estimates of

genetic variance. Pedigree statistics calculated with the Pedantics

package in R (Morrissey, 2018) show that inbreeding is negligible in

this population despite the small founding structure of the community

(Table S1).

Individual growth curves from this population are plotted with

World Health Organization (WHO) percentiles overlaid for compari-

son (Figures 1–3). WHO growth percentiles range from birth-19 years

for height and BMI, and from birth-10 years for weight (de Onis et al.,

2007). Therefore, height and BMI plots include only individuals with

TABLE 1 Sample characteristics of
longitudinal data

N 260

Males 126 (48.5%)

Females 134 (51.5%)

Age range (years) 0–27

Data collection period 1997–2017 (mean = 2002, SD = 3.5 years)

Number of repeated measures 2–16 (mean = 7.56, SD = 4.85)

Time between data points (years) 0.36–10.01 (mean = 0.90, SD = 1.01)
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2 or more measurements recorded by age 19, and the weight plot

includes only those with 2 or more measurements by age 10. We plot

WHO curves for the 5th, 50th, 85th, and 95th percentiles due to their

significance in reference to BMI (Barlow, 2007).

Growth curves show that males are slightly taller than females and

females slightly heavier than males across all ages (Figures 1 and 2),

and female BMI appears to increase substantially around age 12 (Fig-

ure 3). BMI is the most variable of the three traits, as we expect for

such a composite trait with a less direct relationship to age than either

height or weight. This variation is characterized by both fluctuations

in individual BMI curves and the large population-wide spread of BMI

measurements that increases substantially throughout adolescence

(Figure 3). Children and teens who fall below the 5th BMI percentile

are considered underweight by one broadly accepted clinical standard,

those between 5 and 85% are healthy, those between 85–95% are

considered overweight, and those above 95% are considered obese

(Barlow, 2007). Table 2 displays descriptive statistics for child height,

weight, and BMI in Bwa Mawego alongside height-for-age, weight-

for-age, and BMI-for-age z-score statistics based on the 2007 WHO

reference tables (de Onis et al., 2007). Stunting (height-for-age <

−2SD), underweight (weight-for-age <−2SD), and wasting (BMI-for-

age <−2SD) appear to be uncommon in this population given that no

more than 2 children fall into any one of these categories in any age

class (Table 2). Higher proportions of children fall above 1 standard

deviation in BMI-for-age z-scores, but less than 10% are considered

overweight (>+2SD) after age 3 by WHO standards (WHO, 2010).

Bayesian LMMs characterize the variation observed in height,

weight, and BMI. Although sex and age were modeled as fixed effects

in all LMMs, we do not report their coefficients since these control

variables are better visualized (Figures 1–3), and age was modeled as

F IGURE 1 Height (cm) curves for
251 children ages 0–19 years plotted
with WHO percentiles for
comparison (de Onis et al., 2007).
WHO, World Health Organization

F IGURE 2 Weight (kg) curves for
158 children ages 0–10 years plotted
with WHO percentiles for
comparison (de Onis et al., 2007).

WHO, World Health Organization
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a spline which complicates interpretations of its model coefficients.

We report beta coefficient estimates for the period effect control

(secular trends) in Table 3. Since height, weight, and BMI were log-

transformed as outcome variables, these coefficients are interpreted

on a multiplicative scale (Flanders, DerSimonian, & Freedman, 1992).

The collection year variable used to measure this effect was z-scored

(mean = 2002; SD = 3.5). Across the 20-year data collection period,

exponentiating these beta coefficients and converting them to per-

centages indicates that height increased by 6.5%, weight increased by

16.0%, and BMI increased by 2.9% in this population (Table 3). Credi-

ble intervals indicate that height and weight show clearly increasing

secular trends, whereas the 90% interval for BMI spans zero and does

not show a significantly positive trend. Height, weight, and BMI in

5-year-olds plotted from 1997 to 2007 show secular trends in the

raw anthropometric data for a single age of significance and also sup-

port these model coefficients (Figures 4–6). We show secular trends

at this age because body fat is typically at its lowest percentage

between 5 and 6 years, and children who are overweight at this age

show increased risks of metabolic disorders later in life (Moore et al.,

2003; Nader et al., 2006). Height and weight show increasing secular

trends in 5-year-olds during the 1997–2007 decade that are slightly

higher in males than females (Figures 4 and 5). BMI trends are less

clear, and there is a larger spread of variation in this metric than for

either height or weight at this specific age (Figure 6). BMI appears to

increase slightly in 5-year-old females between 1997 and 1999 before

plateauing, and males show a modest increase between 2005

and 2007.

LMM results show that height, weight, and BMI are all highly

repeatable for the 260 individuals in this analysis (Table 3; Figure 7).

We report modes and credible intervals to characterize posterior

probability distributions. Unlike confidence intervals that reflect accu-

racy in reference to theoretical probability distributions, credible inter-

vals denote ranges of variation in parameter estimates to describe the

shape of posterior distributions that have been produced by updating

prior probability distributions with observed data (McElreath, 2015).

Modes reflect the most probable beta coefficient and variance com-

ponent values, and 90% credible intervals encompass 90% of the

values sampled from posterior distributions. High posterior modes

with small credible intervals indicate that approximately 82% of the

variation in height and 81% of the variation in weight are explained by

variance within-individual growth curves in this population when also

controlling for sex, age, and secular trends in these longitudinal data.

BMI is less predictable than height or weight as individuals age, but

variance within individuals still explains 77% of the population-wide

variation not captured by age, sex, or secular trends (Table 3).

Heritability estimates reveal that, after accounting for the impacts

of sex, age, and secular trends, genetic variation explains substantial

proportions of variation observed between individuals' height, weight,

and BMI, and also explains large proportions of the repeatabilities

modeled in the set of LMMs with only one random effect (Table 3).

Heritability estimates reflect only the proportions of variation

between individuals that are explained by shared genes because these

LMMs also included individual IDs as a random effect to account for

variation within-individual growth curves. Thus, heritability estimates

are independent of repeated measures within individuals, but repeat-

ability estimates do encompass what is measured in heritabilities

because all aspects of an individual's identity (including genetic and

nongenetic attributes) that impact the observed phenotypes are cap-

tured in repeatability ratios. Additive genetic variance accounts for

approximately 68% of the observed variation between individuals in

height, 64% for weight, and 49% for BMI when also controlling for

repeated measures within individuals. Although 90% credible intervals

are much wider for heritabilities than repeatabilities, the lower limits

for all heritability intervals are greater than 0.20, indicating that

genetic variation significantly impacts phenotypic variation for all

three traits (Figure 7).

F IGURE 3 BMI curves for
251 children ages 0–19 years plotted
with WHO percentiles for
comparison (de Onis et al., 2007).
BMI, body mass index; WHO, World
Health Organization
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We report two R2 statistics defined specifically for LMMs by

Nakagawa and Scheilzeth (2013) (Table 3). R2m values measure the

proportion of variation in growth phenotypes explained by only the

fixed effects of each model. Sex, age, and secular trends explain

approximately 92% of the observed variation in height, 89% of the

variation in weight, and 58% of the variation in BMI in this population.

R2c values measure the proportion of variation in phenotypes

explained by both fixed and random effects of each model

(Nakagawa & Scheilzeth, 2013). We report conditional R2 estimates

from the set of heritability models, and the combination of sex, age,

secular trends, within-individual variance, and additive genetic vari-

ance explains approximately 99% of the observed variation in height,

TABLE 2 Descriptive anthropometrics with WHO-reference z-score statistics

Height

Age (years) N Mean (cm) SD (cm) Range (cm) Mean HAZ HAZ SD % <−2SD % <−1SD % >+1SD % >+2SD

Females

0–3 21 90.13 6.35 (74.0, 100.3) 0.70 1.70 0 (0%) 3 (14.3%) 2 (9.5%) 4 (19.0%)

3–5 26 103.34 5.73 (95.4, 116.6) 0.00 0.97 1 (3.8%) 2 (7.7%) 3 (11.5%) 1 (3.8%)

5–10 32 119.95 9.49 (107.7, 142.2) 0.07 0.78 0 (0%) 1 (3.1%) 4 (12.5%) 0 (0%)

10–15 30 154.98 8.45 (142.5, 175.0) 0.03 1.03 1 (3.3%) 3 (10.0%) 6 (20.0%) 1 (3.3%)

15–19 18 162.38 5.94 (155.0, 178.1) −0.06 0.91 0 (0%) 2 (11.1%) 1 (5.6%) 1 (5.6%)

Males

0–3 13 90.62 5.27 (78.10, 98.55) 0.08 1.15 1 (7.7%) 1 (7.7%) 1 (7.7%) 1 (7.7%)

3–5 33 103.56 6.78 (90.6, 122.8) 0.00 1.19 1 (3.0%) 4 (12.1%) 3 (9.1%) 3 (9.1%)

5–10 29 124.30 10.30 (101.1, 138.5) 0.00 0.90 1 (3.4%) 2 (6.9%) 3 (10.3%) 1 (3.4%)

10–15 22 151.10 11.79 (122.7, 167.5) −0.34 1.01 1 (4.5%) 4 (18.2%) 2 (9.1%) 0 (0%)

15–19 22 169.34 9.52 (137.3, 183.7) −0.63 1.23 1 (4.5%) 4 (18.2%) 1 (4.5%) 0 (0%)

Weight

Age (years) N Mean (kg) SD (kg) Range (kg) Mean WAZ WAZ SD % <−2SD % <−1SD % >+1SD % >+2SD

Females

0–3 20 13.15 2.57 (8.62, 17.69) 0.99 1.37 0 (0%) 1 (5.0%) 6 (30.0%) 4 (20.0%)

3–5 27 16.70 2.55 (13.15, 21.77) 0.13 1.00 1 (3.7%) 3 (11.1%) 4 (14.8%) 1 (3.7%)

5–10 32 22.45 4.66 (15.06, 33.57) −0.04 0.80 0 (0%) 3 (9.4%) 3 (9.4%) 0 (0%)

Males

0–3 14 13.66 0.96 (12.25, 14.97) 0.53 0.59 0 (0%) 0 (0%) 2 (14.3%) 0 (0%)

3–5 33 16.74 2.56 (12.70, 24.04) 0.07 1.00 0 (0%) 7 (21.2%) 4 (12.1%) 1 (3.0%)

5–10 29 24.74 4.93 (14.06, 34.02) 0.03 1.04 1 (3.4%) 3 (10.3%) 5 (17.2%) 1 (3.4%)

BMI

Age (years) N Mean SD Range Mean BAZ BAZ SD % <−2SD % <−1SD % >+1SD % >+2SD

Females

0–3 16 17.04 2.83 (13.29, 22.13) 0.88 1.73 0 (0%) 2 (12.5%) 1 (6.3%) 6 (37.5%)

3–5 26 15.72 1.54 (12.95, 18.59) 0.24 1.06 0 (0%) 4 (15.4%) 6 (23.1%) 1 (3.8%)

5–10 32 15.48 1.69 (12.71, 20.05) −0.16 1.00 1 (3.1%) 5 (15.6%) 2 (6.3%) 1 (3.1%)

10–15 30 19.10 2.65 (13.47, 25.64) −0.01 1.00 1 (3.3%) 1 (3.3%) 6 (20.0%) 0 (0%)

15–19 18 21.90 4.27 (17.73, 33.85) 0.12 1.09 0 (0%) 2 (11.1%) 4 (22.2%) 1 (5.6%)

Males

0–3 13 16.82 1.70 (12.83, 19.72) 0.65 1.34 1 (7.7%) 0 (0%) 5 (38.5%) 1 (7.7%)

3–5 33 15.57 1.46 (12.44, 18.89) 0.11 1.10 2 (6.1%) 1 (3.0%) 3 (9.1%) 3 (9.1%)

5–10 29 15.87 1.57 (12.97, 19.55) 0.01 1.09 1 (3.4%) 3 (10.3%) 2 (6.9%) 1 (3.4%)

10–15 22 18.01 2.66 (14.61, 25.42) −0.18 0.99 1 (4.5%) 4 (18.2%) 0 (0%) 1 (4.5%)

15–19 22 20.59 2.08 (14.56, 23.93) −0.23 0.90 1 (4.5%) 1 (4.5%) 0 (0%) 0 (0%)

Abbreviations: BAZ, BMI-for-age z-score; BMI, body mass index; HAZ, height-for-age z-score; WAZ, weight-for-age z-score; WHO, World Health Organization.
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98% of the variation in weight, and 91% of the variation in BMI

(Table 3). These statistics indicate that age, sex, and secular trends

explain the majority of anthropometric variation, leaving relatively

small amounts of variation to be explained by within-individual and

additive genetic variances. However, repeatability and heritability

variance components account for much more of the variation

observed in BMI than for variation observed in height or weight

(Table 3).

TABLE 3 LMM posterior modes and
90% credible intervals for
within-individual variance (VI), additive
genetic variance (VA), repeatability and
heritability ratios, and secular trends

Height Weight BMI

VI 0.019 (0.016, 0.021) 0.199 (0.170, 0.233) 0.107 (0.097, 0.131)

Repeatability 0.817 (0.790, 0.838) 0.813 (0.787, 0.841) 0.772 (0.743, 0.802)

VA 0.014 (0.009, 0.022) 0.162 (0.105, 0.246) 0.071 (0.028, 0.112)

Heritability 0.683 (0.450, 0.836) 0.640 (0.453, 0.837) 0.487 (0.213, 0.704)

Beta (period) 0.011 (0.008, 0.014) 0.026 (0.016, 0.035) 0.005 (−0.003, 0.012)

R2m 0.924 (0.914, 0.934) 0.891 (0.876, 0.905) 0.580 (0.534, 0.614)

R2c 0.986 (0.986, 0.987) 0.981 (0.979, 0.982) 0.905 (0.893, 0.913)

Note: R2m measures the proportion of observed variation explained by only the fixed effects of each

heritability model (sex, age, and period effect), and R2c is that explained by all of the fixed and random

effects (sex, age, period effect, within-individual variance, and additive genetic variance).

Abbreviations: BMI, body mass index; LMM, linear mixed model.

F IGURE 4 Height of children between ages 5 and 6 years from
1997 to 2007. One hundred and twenty-eight data points for

80 children (33 males and 47 females) are plotted with loess curves
showing moving averages and 95% confidence intervals

F IGURE 5 Weight of children between ages 5 and 6 years from
1997 to 2007. One hundred and twenty-eight data points for
80 children (33 males and 47 females) are plotted with loess curves
showing moving averages and 95% confidence intervals

F IGURE 6 BMI of children between ages 5 and 6 years from
1997 to 2007. One hundred and twenty-eight data points for

80 children (33 males and 47 females) are plotted with loess curves
showing moving averages and 95% confidence intervals. BMI, body
mass index

F IGURE 7 Repeatability and heritability estimates from Bayesian
LMMs. Plotted modes and 90% credible intervals summarize 1,000
samples from posterior distributions of within-individual variance
components and additive genetic variance components. LMM, linear
mixed model
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4 | DISCUSSION

We analyzed longitudinal measures of body size in a small-scale

Caribbean population that has recently transitioned nutritionally

and behaviorally to include more Westernized dietary products and

technologies alongside traditional subsistence horticultural prac-

tices. Height, weight, and BMI measurements track growth for

260 individuals in a remote village in Dominica. Individual BMI

growth curves show large increases for many females in adoles-

cence and into adulthood while more males appear to be over-

weight earlier in childhood (Figure 3).

Sex-specific differences in growth and variation are population-

specific and age-dependent, related to environmental stressors, mor-

bidity, gender-biased resource distributions, and life-history trade-offs

(Stinson, 1985). Growth phenotypes from Bwa Mawego follow gen-

eral patterns observed in other small-scale tropical societies in which

males exhibit less variation than females (Walker et al., 2006), a pat-

tern also seen in BMI across Australia and several European countries

(Schousboe et al., 2003). The combination of higher levels of adiposity

in females with substantial genetic variation in different patterns of

fat distribution may contribute to greater variation in female versus

male BMI (Samaras et al., 1997). Additional data regarding more

detailed body composition, morbidity, specific behavioral and dietary

variables, and activity levels are needed to address potential underly-

ing causes of patterns observed between male and female anthropo-

metric variation in Bwa Mawego.

The individuals in this study range in age from birth to 27 years

old throughout the 20-year data collection period (1997–2017). We

modeled age, sex, and collection year simultaneously to capture secu-

lar trends independent of age or sex, and period effect beta coeffi-

cients show that height and weight have increased over these

decades during which the population as a whole has gained access to

imported and processed foods, piped water, electricity, and other

resources such as internet and cell phones (Table 3). From 1997 to

2017, 15-year-olds in Bwa Mawego gained approximately 10.9 cm in

height, 9.3 kg in weight, and 0.6 units in BMI. Similar data from the

Seychelles that span a nutritional transition show gains of 10–13 cm

in height and 9–15 kg in weight over a 50-year period in 15-year-old

adolescents (Marques-Vidal, Madeleine, Romain, Gabriel, & Bovet,

2008). Secular trends among U.S. children and adolescents show simi-

lar increases in weight (+5–7 kg) and relatively smaller gains in height

(+1.5–2.0 cm) from 1960–2002 (Ogden, Fryar, Carroll, & Flegal,

2004). Longitudinal data from Tsimane forager-horticulturalists show

that adolescents gained 0.6 cm in height, 0.5–1.4 kg in weight, and

0.16–0.56 units in BMI per decade from 2002 to 2015 (Blackwell

et al., 2017). Few individuals in Bwa Mawego fall into clinically

defined overweight or obese categories at any time point in these lon-

gitudinal data (Table 2; Figure 3), and we do not find clear evidence of

a population-wide increase in BMI in these younger generations

(Table 3; Figure 6).

Age, sex, and secular trends account for the majority of variation

in anthropometric phenotypes in Bwa Mawego, but far less in BMI

than height or weight (marginal R2 in Table 3). Repeatabilities and her-

itabilities measure the proportions of phenotypic variation explained

by within-individual and additive genetic variances that are residual to

the variation explained by sex, age, and secular trends. Repeatability

estimates show that aspects of an individual's identity, including both

genetic and nongenetic factors such as behavior, are highly predictive

of these anthropometrics as individuals age. All repeatabilities are

greater than 75% (Table 3), leaving low residual variances unexplained

in these repeated measures.

Heritability estimates for height (0.68), weight (0.64), and BMI

(0.49) in Bwa Mawego are lower than many published estimates from

twin studies (Elks et al., 2012; Silventoinen, 2003; Silventoinen et al.,

2017), but well within the range of estimates from other types of

family-based designs that are likely less inflated from common devel-

opmental environments than those shared by twins (Elks et al., 2012).

We acknowledge that common environments may inflate our esti-

mates of heritability slightly; however, flexible and fluctuating

residence patterns in Bwa Mawego diffuse much of the house-

hold/spatial clustering known to influence anthropometric variation

and heritability estimates in other populations (Heckerman et al.,

2016; Saunders & Gulliford, 2006). Much of the variance in anthropo-

metrics left unexplained by age, sex, and secular trends is attributed

to additive genetic variance in this Caribbean population (Table 3;

Figure 7), and future molecular research is needed to characterize spe-

cific genetic influences on variable anthropometric and metabolic

health outcomes. This is particularly warranted in reference to body

mass index given that age, sex, and secular trends explain much less

of the variation in BMI than in height or weight, bolstering the relative

importance of genetic variation (Table 3).

Variation in BMI between populations is best explained by envi-

ronmental, ecological, and behavioral factors, but most of the varia-

tion within populations appears to be explained by genetic variation

(Bogardus, 2009). Despite estimating moderate to large heritabilities

in a multitude of populations, geneticists have yet to account for most

of this alleged genetic variation with specific variants, creating a prob-

lem of “missing” heritability. Diverse, small-scale populations that are

underrepresented in the current genetic literature may be valuable

resources for discerning how biological, cultural, and environmental

factors intersect to shape anthropometric variation and health on a

more inclusive, global scale (Popejoy & Fullerton, 2016). Substantial

contributions of additive genetic variance to anthropometric variation

in this Caribbean population of mixed ancestry (Moreno-Estrada et al.,

2013) warrant further investigation, especially given the large amount

of variation in body mass index between individuals and the lack of

population-wide secular trends throughout this transitional period

(Table 3; Figures 3 and 6).

We have assessed the impacts of age, sex, secular trends, within-

individual variance, and additive genetic variance on phenotypic varia-

tion in height, weight, and BMI in a Caribbean community that has

recently transitioned to include more Western foods and technologies

into traditional horticultural diets and subsistence practices. Anthro-

pometric heritabilities are moderate in this population and body mass

index varies considerably between individuals, but metabolic health
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correlates of anthropometric variation remain unknown at this time.

Additional data regarding specific behavioral, dietary, environmental,

and genetic factors will enhance our understandings of anthropomet-

ric variation and health in the future.
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